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A Comparison of Two Difference Schemes 
Used for Numerical Weather Prediction 

WC compare two finite difFerence schemes which have been used for numerical M:eathcr 
prediction. One is based on the scheme of A. Kasahara and W. Washington. and the 
second on the scheme of Y. Kurihara. We compare these schemes by applying them :o 
the shallow water equations on a hemisphere. Our conclusion is that the KuCha:a 
scheme is more accurate provided the uniform mesh spacing suggested by Kurihara 
is not used. The Kurihara scheme requires twice as much time and storage for the same 
mesh spacing. The Kurihara scheme is much less prone LO nonlinear instability 

1. INTRODL'CTHJN 

The purpose 01‘ this work is the comparison of two fir&e differexe schemes which 
have been used in numerical models of the atmosphere based on the primiti~c 
equations. The first is a “leapfrog” scheme based on a staggered mesh which ha5 
been used by Kasahara and Washington [4]. The second is a scheme due to 
Kurihara which is derived from the integral form of the hydrodynamic equation3 
[I]. The best way to test these schemes is to apply both to the same modei of ihc 
atmosphere. ‘out Ihis is an unreasonable programming efforr. Therefore, we aiicpt 
the same simplification as Phillips and Kurihara; which is the application oC these 
schemes to the shallow water equations on a hemisphere instead of the primitiv: 
equations IZ, 31. This report is written so that most of the conclusions sho-iiid be 
understood upon reading only Section 1 (Introduction). In Section 4 we gjt;i: CI 
more detailed description of the difference schemes, 

The shallow water equations are 

‘3 1969 by Academic Press, Inc. 
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where II, L’, Q’ have been rendered dimensionless by use of the quantities U, and v0 . 
The constants are defined by 

Cd = o/aU, , Gm = %G 

where JI is the angular velocity of the earth and a is its radius. The diffusion terms 
(i.e., C,ECf(v~/)) are of course not part of the shallow water equations. These terms 
are added to eliminate nonlinear instability ([8], p.126). The diffusion coefficient (T 
must be taken large enough to eliminate nonlinear instability (for the centered 
scheme (T > 4 x lo5 mysec). The parameter E, allows the diffusion used for the 
height field to differ from that used in the momentum equations. 

The range in latitude is 0 < 0 < 7~12 and we require the flow to be periodic in 
X with period x-, thus 0 < X < z is the range in longitude. We require symmetry at 
6 1 0. In the programs we set II = P = 0 and compute F at the pole (a == n/2). 
Actually II and c are not defined at the pole. 

In Section 4 we will describe the difference schemes as applied to the shallow water 
equations. To simplify matters we will here describe the difference schemes as they 
would be applied to the equation 

defined for rectangular coordinates. The centered scheme is defined on the staggered 
mesh as shown in Fig. 1. The mesh points marked o carry values of 14 at the nth 

FIG. 1. Centered scheme mesh. 
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time level, and the X points carry values at the (12 - 1) time level. To find values 31:. 
the (12 i- :j time level we use the following finite dif?erence version of Eq. (4.1, 

iNote that ~11:;’ is computed at the x points only. 
The Kurihara scheme is based on the integral form of EC!. (C;), 

where the area Z; and line segments Si are defined by Fig. 2. (Note that vve have 
used a vrariable mesh spacing in the x-direction.) The box Z. with sides Si is cenlere.2 
about the mesh point P,, . The integrals are approximated as follows: 
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FIG. ?. Kurihara mesh. 

where Ai are the lengths of the line segments indicated in Fig. 3 and r/, is the zrea 
of the box. All the boxes are centered about the mesh point they contain. 

The Kurihara scheme is quasi-conservative. This is the reason for using the 
above integral form of the equations. By quasi-conservative we mean that the SJWXI 
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FIG. 3. Kurihara mesh. 

of ordinary differential equations obtained by using only spatial difference operators 
on the partial differential equations conserves energy (see Section 4). 

The time derivative (a/LV)(Jr, u clx- dy) is approximated by (zl:+l - 21te1)/2 At 
and the line integrals on the right are centered at the nth time level. Thus two time 
levels must be stored at each mesh point for the Kurihara scheme and only one 
time level for the centered scheme. Also we need compute t~+l on half the mesh 
for the centered scheme and the entire mesh for the Kurihara scheme. These are 
important advantages for the centered scheme. 

For both schemes there is trouble near the pole. If the same value of AA is used 
on all circles of constant latitude, then the mesh points are too close near the pole. 
To avoid this we use fewer mesh points on the constant B circles near the pole. In 
the case where il0 = 5”, we may use 4, 8, 16, 26, 36 points for 0 = 8.5”, SO”, 7.5”, 
70”, 65”, respectively. On all circles below 65’ there are 36 points, thus AX = 5” 
on these circles. Thus we have an irregular mesh. The Kurihara scheme as described 
above can handle an irregular mesh without modification (except at the pole point 
itself). The centered scheme requires some interpolation where the mesh is irregular. 
Using the centered scheme (see Fig. 4) we need the values at the point marked @ 
to compute a new value at P, . These are obtained by linear interpolation using 
points Ps and P, . Both the Kurihara and centered schemes have only first-order 
accuracy at points where the mesh is irregular, but they have second-order accuracy 
where the mesh spacing is constant. 

The differential equations conserve mass, that is M = ss y cos 0 do dA is inde- 
pendent of time. The Kurihara difference scheme also is conservative, that is 
.L’@z2 AX cos 0 sin(A8/2) is independent of 12 (provided the value of q at the pole 
is computed properly). However, the centered scheme is not conservative because 
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FIG. 4. Interpolation in centered mesh. 

of the interpolation near the pole. The mass gain after eight days for the centereci 
scheme at 2.8” resolution (LIB = 2.8”) is about .O3 percent, which is probably not 
serious. In other cases there was a small gain or loss in mass, also not serious. 

A more complete description of the results is given in NCAaR Manuscript. 
No. 68-215 IS]. In order to reduce the number of figures, we have described some 
results without including the relevant figures. The results are given in Figs. 5-i i. 
The variables listed in these figures are defined in the Glossary. 

The contour plots are the values of the ZI veiocity (east-west velocity) at the 
time (in days) indicated on the plot. The contour interval is 10 misec. The maximEm 
value of II is initially about 100 m,/sec. The duration of the run (in days) is indicated 
by the abscissa in the lower right-hand graph. 

The available energy is defined by EC: = E - 17 where 

The quantities y0 and U,, are used to render the equations of motion dimensioniess, 
The kinetic energy is defined by JJ $(~3 + 8)~ cos 8 de dA. These energy variables, 
normalized to maximum value one: are plotted in the lower right-hand corner. 
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A. E@hct of Resolution 

In this section we will discuss the effect of resolution (i.e., mesh spacing) on the 
results. It is difficult to isolate the effect of resolution from that caused by the diffu- 
sion which is used to stabilize the difference scheme. The diffusion affects the flow 
field, so we can only hold the diffusion constant and vary the resolution and the 
difference scheme, then vary the diffusion at fixed resolution. We fixed the diffusion 
at 4 x IO5 m2/sec which is slightly above the minimum value which will stabilize 
the centered scheme. An approximate solution derived by Haurwitz [7] is used for 
the initial conditions. This is the same initial condition used by Phillips and Kuri- 
hara [6, 21. It is described in Section 4. Note that our fields extend over half the 
hemisphere so that the flow corresponds to wave number 6. 

Figs. 5 and 6 give results for the centered scheme. There is very little difference 
for either the contour plots or the energy curves between JINT = 32 and 48, so 
we do not include the result for the JINT = 48 case (see [5]). However, there is 
some difference between 18, 24, and 32 (we do not show the JZNT -= 24 case here; 

CEldKRED SCHEME JCASE. 16. 1 
JINT.lE UfJTOT. 5% DELT. 6P0.0 
MASS (MIN-N4X).t.O0127 TYPE.1 
YDFN. ! DIFDFN. 4.80Et05 EPSDFN.0 
NSTZ. 0 DIFST.2. 0. EPss12=0 

LJ CPSE. 16. 7 DIV. J.OOEtOO u CIA. 16. I DIY. 5.00EtOO 

I --i 'I 1 

u CISE' 16. f D4b B.OM*OO 
1 

PYlILdgLE 4ND KINETIC ENERC~ 
To ',I EN; H4X. f.OO----,--KIN ENG M/X. 1.00 

.a 

FIG. 5. Centered scheme-5” mesh. 
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CENTERED SCt!+X .JCAR* 21, 1 
JINT.32 NIJTOT.1762 DELT. 300.0 
MASS IKIN-MAXl.~.OPC!28 TYPEml 
NCFN- t DIFDFN- 4.00Ec05 EPSDfNd 
NsT2= 0 DIFSTZ. 0. EPSSTZ. 0 

MSH SPACIW AND ClFFUSlOfi 
,Ofi-GILFFUSN BAX- f.03 

ii CASE- 21, 1 DAY. i.QUE+OO DAY=- 2.OOE+OC 

u CASE- 21, t DAY- J.OOEtOO u CASE- 21. : DAYS 5.OOEcOP 

Fir;. 6. Centered scheme---2.3’ mesh 

see 151). There is some difference in the velocity of tne flow as measured from the 
movement of the flow pattern (see Table Ij. Note th.at there is no “double eye” 
structure for JINT = 18, thus the accuracy is not as good in this case. 

WAVE VELOCITY--CENTERE= $kF!EME 

ill9 degreej48 hours !Tl,“SkX 

~-__ --___ 

5i 42.5 25.8 
3.15’ 45.3 29.4 
2.81” 45.9 30.6 
1.88” 41.8 31.2 
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The wave velocity is obtained by measuring the horizontal movement of the 
high between t = 0.0 and t = 2.0 days. This high is the one centered at 19 = O”, 
A = 90° at time zero. The approximate value obtained from the Haurwitz solution 
is 32.6 mjsec [6, 71. The error in measurement from the contour plot is probably at 
least 1.4” or 0.9 m/set. In addition, we have truncation error due to the difference 
scheme. 

Figures 7-9 give the results for the Kurihara scheme. For Figs. 7 and 8 we used 
approximately the same mesh spacing as for the centered scheme. 

KURIHARA SCWlE .~CASE.508. 2 
JHA'%-~O NIJTOT. 595 DELT* 600.0 
MASS IMIN-MU1.1.0000 
DIFDFW 4.00Et05 EPSDFN=o 

MESH SPACING AND DIFFUSION 
.QS---DIFFUSN MAX- 1.00 

2 23 
L4111UDE44 

64 85 

I; C4SE-508. 2 DAY= l.QQEtOQ ! ; CASE=508. 2 DAY= 2.OQEtQQ , 

LJ C4SE.508. 2 D4Y. 3.QQE+QQ lJ C4SE-508. 2 DIY= 5.QQEtQO 

I f 

U CA%-508. 2 DAY=-S.QQEtQQ AVAILABLE AND KINETIC ENERGY 
ra"VL ENC MAX. 1.00.--KIN ENC M4X. f.00 

.75 
0 2 

TIK~DA~S~ ' 
e 

FIG. 7. Kurihara Scheme-5 mesh. 

For Fig. 9 we used the same mesh as Kurihara, namely we dropped two mesh 
points per latitude circle (four points on a 360” mesh). This has the effect of 
increasing the mesh spacing (dx) toward the pole (note the upper right-hand graph 
in Fig. 9). The results are clearly poor for this mesh. Also, the saving in computation 
time for this mesh is probably not very large. The total number of points for these 
two meshes have the ratio 1761 : 1121. However, the Kurihara scheme for variable 
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k-mIliARA SCKE JCASE=503. ! 
vW0t.34 .NIJTLlT.iXl DEST- 300.0 
kASS ?ilN-pAxI -1 .OOOP 
3ifIrN. 4.0GitO5 mm.0 

J CkSE.503. t DkY- 1.00Et00 

U CksE-503. f DkY- J.OOE+OO 

1 I 

; CASE-503. I DkY- B.OOE+OO i 

J Ck5~~503. I rui.= 5.0x200 

FIG. 8. Kuriharz scheme-X9 mzsh 

Ah is much more complex than it is for constant AX which reduces the difference tn 
computing time. The superior accuracy in Fig. 8 relative to Fig. 9 probably depends 
on the flow fields having relatively little variation near the po!e. This might not be 
true in a numerical model of the atmosphere. 

The Kurihara scheme seems to be more accurate than the centered scheme. The 
Kurihara scheme at 5’ seems to be slightly better than the centered scheme at 2.75’ 
but not as good as the centered scheme at 2.81”. 

In one case we varied the diffusion coefficient with latitude, ihat is, a reiatix 
variation from I.0 at the equator to 3.75 at the pole teas used. We noticed very 
little difference between this case and one in which the diSkon was held zonstzzit 
(relative value 1.0) from equator to pole. 
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KLRIHARA SCKlE JCAb'506. 1 KSH SPACING AND DIFFUSION 
J+tAWU NIJTOT.ltZI DELT. So0.a .Oe-- DlfFl!SN MAX. 

MASS ININ-MXl.l.aOOO 
DtfW= A.#ffE+O5 EWf?f-0 

23 
LATIT"DEd* 

65 S7 

“c CASE.$W, 1 DAY- I.OOE*OO , u CASE.506. 1 DAY- 2.0EtCO 

u CASE-506. f DAY. 3.POEtOO 

U CASE-506, 1 DAY= 8.QOE*PO 

u CAsE.506. 1 DAY- 5.OPE+OO 

AVA1LASLE AND KI~TIC ENERC‘, 
;-o#L El& MAX. 1.00..,-KIN ENC MAX. 1.00 

.75 
0 2 

TIK[DAtSI 
6 e 

FIG. 9. Kurihara scheme-uniform mesh. 

In another case a diffusion coefficient of 2 x 10” mZ/sec was used with the cen- 
tered scheme. This was not sufficient to stabilize the scheme, since the computation 
started to explode around the seventh day. However, the qualitative pattern of the 
LI field is the same as in Fig. 6 (where D = 4 x lo5 m5/sec) at the fifth day. A 
diffusion coefficient of 8 x lo5 mP/sec was also used. Again the qualitative pattern 
did not change, only the intensity of the field diRered with 0. 

In another case a slightly different type of diffusion term was used. This diffusion 
term is derived from the first step of the two-step Lax-Wendroff difference scheme. 
Consider the simple equation zfI, = U, . The first step of the two-step Lax-Wendroff 
scheme is 
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This is rhe same as adding a DuFort-Frank! type of diffusiop [S] 5siti-i a di%~sio:? 
coefficient 0 such that Ate/d.? = 4 which is the maximum allowed by ihe stabi;iry 
condition for the lagged scheme. In our case of spherical coordinates :here is a 
slight difference between the term derived from the two-step Lax-Wendroff scheme 
and the DuFort-Frank1 term because of a variation nith 8 (see Section 4). In CIIZ 
case Lye used a Lax-Wendroff type of diffusion with CT = 4 x Lo” mz,,scc. The~.e 
was iittie difference betweeil this case and the DuFort--Frank1 case. 

For Fig. :O we used a diffusion term of two-seep Las-WendroK r;~p: ‘.;.i:? 

CE:.T:PEC 5:rlEME CASE- 25, 1 
J!*ii=ta rII.JTjTc 585 :‘ELT- 600.: 
t%SS IUIN-MAX:-1.30047 TYPE=1 
wF’:= 9 GIFDFH= 0. EPSDFh.C 
HSZ= 23 iIFST2. l.COE+2F E?SST2-0 

MESH SPAS!NG AW 31FF11SlGti 
.IP.---SIFt-USN r.A!.- 

0 21 
LATIIUDZ2 

a5 

u ;A%= 25, 1 DAY. t.OUEtOO ‘J CASE- 25% t CAY. i.lPE+OP 

CASE- 2% 1 DAY= 8.OOEtOO PVAiLUI AND K:IKTIC EWRGY 
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cr df/& = 4 (the large value of DIFST 2 insures the latter). However, NST 2 - 
23. which means that the Lax-Wendroff type diffusion is applied only once every 
23 time steps, that is once every 3.83 hours in atmospheric time. Also, we used a 
5” mesh so that Fig. 10 should be compared with Fig. 5. We include this case to 
show that this “two-step” type of scheme can be highly dissipative. 

Next, in Fig. 1 I7 we consider the Kurihara scheme with a reduced diffusion 
coefficient, u = 1 x IO5 m’lsec. This should be compared with Fig. 8 where 
0 = 4 x 10” m”/sec. The fields in Fig. 11 have the same pattern as in Fig. 8, but 

KURlliMA SCHEt'& JCASE.510. 1 
GWAK.34 NIJTOT-176t DELT- 300.0 
MASS IMIN-MAXI -I. 0000 
GIFGitl- i.OOE+Q5 EPSCfN=O 

u CdSE*510, 1 DAY- ?.OOE+OQ 

SE-510 ! DAY- 3.OOEtOO 

u CASE.510. 1 DAY- 8.OOEtOO 
__- 1 

KSH SPACING AND DIFFUSION 
.05--4lIFFUSN MAS- 1.00 

23 
LATIT"DEa4 

66 07 

"c CASE.510, 1 DAY- 2.00EtOO ~ 

I, CASE.510. 1 DAY--5.QOE+OO 

AVAILABLE AND KIflEilC ENEPZY 
T"L ENC MAX- f.OO-,KIN EM MPX- 1.02 

FIG. Il. Kurihara scheme-low dissipation. 

they are more intense and also are not as smooth. Note that the kinetic energy is not 
a monotone decreasing function in this case. This case was run out to 32 days to 
check for instability. It was stable. The kinetic energy dropped to .85 at 32 days. 
With CT = 0.0 nonlinear instability develops at about 18 days with the Kurihara 
scheme. 
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Fn all the above cases the Coriolis term was approximated by an implicit (0: 
time averaged) difference form, that is &(z$:’ + $j’)$ In one case we used a space 
averaged scheme, that is $(c:.l,,,; + L:‘;-~,~ i- r%.jLl A-- ~-~,~-~)f. There seemed t3 !x 
no essential difference. 

3n one case we set TYPE L= 2, that is we changed the manner in which the mesh 
is handled near the poles (see the Glossary). This was compared with the xstii”,s 
of Fig. 6, and there was no difference. The fact that there was no difference mry be 
due to the nature of the test case-there is little variation raear the pole. 

3. CONCLUSlONS 

The main conclusions can be listed as follows: 

A. The Kurihara scheme is more accurate than rhe centered scheme 53: a 
given 40. However, note that the Kurihara scheme requires Livice as much storaye 
and twice the computer time for the same value of 40. Thus the Kurihara sciieme 
at 48 shouid be compared with the centered scheme at approximately d8;‘1:‘2. 

For the centered scheme at wave number 6 we noticed little difference in accurac> 
out to five days between a resolution of 2.8’ (32 points pole to equator) and 1.9’ 
(48 points). There was considerable difference between 5’ and 2.8” however. and 
some difference between 3.8” and 2.8”. This would seem lo indicate that 5’ resolve- 
lion is not adequate for a numerical atmospheric model. Of course, the ei&xr cf 
truncation error must be compared with other effects. such as eddy diffusion, 
verticai resolution, mountains, oceans, the importaxe of higher harmonics. etc. 
Thus it is dificult to draw any firm conclusions from an experiment using xj,e 
shallow water equations. We only obtain an indication. 

B. Kurihara used a “uniform mesh spacing” in which the number of points 
on a latitude circle was decreased uniformly going from rhe equator to the pole; 
that is, each circle contained two fewer points than the one below it, Thcs for 
40 = lo“, we would have 18, 16, 14 ,..., 2, 1 points for 19 == 0”. !O’. 20’....: 30’, 90’. 
This “‘uniform mesh scheme,” for 40 == 2.8”, produced far Less accurate resui:s 
than one in which 4h was taken equal to 40 until the 6 E 05” circle was reacned. 
Above 6 s 65” the value of 4h was increased to avoid s?aciag the mesh points too 
closely, 

C. The Kurihara scheme required less dissipation to eliminate no:liixar 
instability than did the centered scheme (g < 1 :I 10” mijsec versus pi = 4 >:: lC” 
for the centered scheme). However, the numerica! models based on the primitive 
equations may require greater eddy diffusion for reasons that do ilot appear nZt!r 
the shallow water equations. Therefore we are not sure of the significance of this 
diRerence. 
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D. We tried three different types of linear dilTusion terms and found little 
difference between them on an eight-day run. We did not try a nonlinear type of 
diffusion which might be more interesting. 

E. We also tried two different ways of treating the Coriolis term for the 
centered scheme, a space average versus a time average (see Section 2). We found 
little difference on an eight-day run. 

4. APPENDIX 

A. Some Integral Imariants for the Shallow Water Equations 

The shallow water equations on a sphere are given in Section 1 (8 is latitude, h is 
longitude, 0 = 0 at the equator). Consider a rectangle R: O1 < 8 < 0, , 
h, < /I < h, . Let Kdenote the kinetic energy and .P the potential energy (remember 
that we are using dimensionless variables), that is 

Then 

and 
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We assume that the boundary conditions require 21 airk i’ to vanish at &he 2~2;~: 
$: and I! to be symmetric and L’ skew symmetric at the equator. IVe coxidcr the 
energy balance for the northern hemisphere, tha! is Ar = 0. AZ :=-I 2z, & = 9. 
8, = r,,2. 41~0 assume Fe == F, = F, = 0. Thee 

We can also show conservation of mass and angular momentum over rhe hemi- 
sphere, that is 

-&ii 9j cos 0 d0 co, = 0. (33 .,l i 

The initial values are the same as those used by Phillips and Kurihara i6. 2:. 
The initial values of the velocity field are obtained from the followinp stream;? 
ftmction 

l/J = --ff%J sin e t a2KcosR 0 sin 8 cm 63. 

The height field is given by 

qj = q&) + a’A(0) + n”B(0) cos Rh + n”C(@) (30s 2RX 



294 GARY 

where 

A(6) = ;w(ZQ + wjcp + EK’P[(R + 1)~” + (2R” - R - 2) - 2R%-“1, 

2(Q t w)k 
B(ej = (R + l)(R -+ 2) ___ cR[(R2 + 2R -+ 2) - (R + 1)” cz], 

c(@ -L $K%+[(R + 1)~” - (R + 2)], 

c = cos 0. 

The values of the constants that were used are 

w = K = 7.8 x 10-G set-l, 
R = 6, 

cpG = 7.84 x 10” ml/sec2? 
a = 6.37 x IO6 m, 

-Q = 7.29 x 1O-5 set-l. 

Haurwitz has shown that in a nondivergent barotropic atmosphere this solution 
will move with angular velocity v[7, 61. 

R(3 $- R)w -- 2Q 
’ = (1 + R)(2 + R) ’ 

The mesh for this scheme is laid out as follows. We define 8, = (k - 2) A0 
where 1 ,< k < K and A8 == rr/2(K - 2). The value of K - 2 is denoted by JINT 
in the upper left-hand corner of output plots. On each latitude circle we place J(k) 
equally spaced mesh points. The coordinates of these points are thus (hj 3 0,) 
where hj = (j - 1) Ah, ) Ah, = r/J(k). The integer J(k) is an input parameter. 
We require J(k) to be even and non-increasing as a function of k; also we require 
J(K) = 2. Note that the domain over which we are integrating the equations is 
0 < 0 < n/2, 0 < A < T. The boundary conditions require u(X + Z-, 19, t) = 
u@, 0, t) and similarly for L' and F. At the pole 0 = 97/2 we require ZI = u = 0. 
We require u and 9 to be symmetric about 8 = 0 and v to be skew symmetric. 

The mesh is staggered in space and time. We use the notation Uj,k = u(& ,8, , tn) 
where tn = IZ At. The variables ZI, c. and F are known for even values of the time 
level n at the mesh points (j, k) = (0, 2), (2, 2), (4, 2) ,..., (1, 3), (3, 3) ,..., (0, 4), 
(2,4),... . That is, the mesh appears as shown in Fig. 12 where the points marked 
x carry values at even time levels and points marked l carry points at the odd time 
levels. 
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1 x 0 

t-i=0 + 0 x 

K=, !---x---o 

X-O 
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0 X ti(14)=6 

X i J(3!=6 

x ( 

0 x Q ; J(Z)=6 

-x---n---x-J J(i)=6 

X=TT 

F:G. 12. Centered scheme neah. 

We wiiil use an operator notation to describe the finite difference equations; 
Given a function gj,k defined over the mesh (hi , 9,k) we let 

Some additional explanation is required because of irregularities in the mesh. 
If j == 1, then 

But g,., is not defined since j = 0 is outside the mesh. Were we use the boundary 
condition which requires that all the variables be periodic in h with period 7~. 
Thus g,., = g,,, where J = J(k) represents the right-hand mesh point on :hc 
latitude circle 6 == 8, . Note that this requires J(k) to be an even number in: order 
that g,., and gJsL be on the same time level. Thus 
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 ̂ _ c%,7: - 8J-l,k 
~J,?...A - 

-----._ 
2AX ’ cw 

In some cases gj,1;,# is not defined because of the variation in f(k). For example, 
consider the mesh shown in Fig. 13. For the point P = (A,, 0,) we have 

(30) 

where j = 3, Ic = 2. 
Since the point (hj , B,,,) is not correctly positioned above (Xj , 0J we must 

replace gi,k+l by an interpolated value. We used linear interpolation; that is. 
relative to Fig. 13 with j = 3 and k =1 2, 

g3.2 = ?rl,3 + u - 4 g3,3 (31) 

ax3 d p+ 
I 

k=3 x >‘V 
Jf2 , 

X 
J=I J=3 

k=2 e X tip x 

k=l X 0 I e 

J= I 2 3 4 

FIG. 13. Centered scheme interpolation. 

where 

a:= Ah, + d 
2 A& 

(Note that d < 0 in the case shown.) 
Thus we are able to handle the variation of the mesh near the pole. If we did not 

increase Ah(k) near the pole, then the Courant-Friedrichs-Lewy [8] stability 
criterion would require a small value of At since the stability criterion is governed 
by the ratio At/AX cos 8. 

A second method to handle the mesh variation near the pole was also tested. 
For this method J(k) = J(1) if k < K and J(K) = 2; that is Ah(k) = AX(l) for all 
latitude circles below the pole. We choose J(1) so that Ah = AB. We then modify 
the spatial operator gX . We define a function Lly(k) such that Ay(k) = A0 below a 
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certain latitude (say 62’) and 4y(k) cos 19;: is constant above that latitude. We Lc; is; 
denote the largest integer which is less than or equal to I (x 2 0). Let II!,, -- 
[dy(k)jdB]. Then ix;; 3 1. Let 

(that is, use linear interpolation to define g,?$.), Now define 

The value of rhe parameter TYPE is printed in the upper left corner of the o&ptx 
hf TYPE = 2. then we have used the latter definition of g:, . If TYPE = 1 1 then 
we have used linear interpolation to define ps as given in Eq. (32). 

We are now prepared to define the cenlered difference scheme. W’e Jet 
,GJ;‘,~ = gi:lj , 0, , t,) and D, , D, , D, denote the finite difference forms of the difF~- 
sion terms which we will define later. The parameter Ed was in all cases zero escepr 
one for which Ed = 1. 
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To solve these equations we first determine I$:‘? then the products ZI~,JI’~~,~. 
$~‘&~ and finally z[J’F, I?$~. 

The boundary conditions are used to obtain u;!,;‘,;’ = u:~$‘, ~7,:’ == $il, and 
#+I zzz -07’;‘. We use the difference scheme to compute values for 1 < k < K. 
6% h- -= K ithe north pole) we use uy,i’ = c~,~’ = 0. The value q$p is obtained by 
averaging the values of 9y,+Kz1 on the first circle below the pole? 

We will next treat the diffusion terms. We will first describe the DuFort-Frank1 
finite difference approximation for the Laplacian operator 

1 a;g pg c ____ 
cos2 e a~ + -&$ (,o, es). (41) 

The term D,, in the difference scheme above is an approximation for 2 L]tC,V”(gjz~) 
where Cd = o/aU, is the dimensionless diffusion coefficient. The approximation 
for V2u is 

- ‘OS ek +4cos ek--l (Ll;,;1 + zf;,;l - 211;,,-, j). (42) 

The term D, is 2 dfC,G”(pv) and D, is 2 4tCdC”gj. 
If we set D,, = D, = D, = 0 and si = 1 in the difference scheme for u, z?, p; 

replace the uT,;l, ~7,;~ and c!j’ terms by the averages u:‘,~ , v;,~,~ , ~y,~~,~; and then 
replace 2 4t by dt, we obtain a finite difference scheme which is usually dissipative. 
This is the first step of the two-step Lax-Wendroff scheme. Another way to obtain 
this scheme is to set Ed = 1, use a centered difference approximation for the time 
derivative and the following formula for D, 

D, = 2 dtCdCz(qm) (43) 

‘vu = & (tfy+l,k f z&,x: + uy,k+1 + zlyJ.-l - 2gy - 2u;i1> (44) 

and similarly for D, and D, . 
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The result of applying this form of the difksion term every 25 rime sreps is 
shown in Fig. 10. This produces a rather heavy dissipation as one might expect. ‘hrr 
these runs we have Ed = 0, but we still have the essence of the two-step iax- 
Wendroff diffusion. 

The parameter NST2 (whose value is shown on the upper left corner 0:’ t&z 
output) gives the frequency at which the two-step Lax-WendroR type of di&sion 
is applied. The value of 0 (units are mejsec) is denoted by DIFST2. If NSTZ = 23? 
then D,, := D, = D, = 0, except every 23rd time step when the diksion terms 
are as given above. If NST2 = 0, then D,, = D, == D, = 0 for all time s:eps. 
The value of D, is C,,V$ where C,, = eeCIl and E, is denoted sS;i EPSST2. Xe 
values NDFN. DIFDFN, EPSDFN are similarly defined except the DuFart-Fra:mk% 
type of diffusion is used. 

C. The Kwihara Scheme 

The mesh for this scheme is as shown in Fig. 14. We define 8,V = (k - 1.5.) 48 
I < k < K where A6 = (z-/Z)/(K - i.5). On each latitude circle we @ace J(k) 
equally spaced mesh points. The coordinates of these points are thus (.>‘j . 0,) where 
A, = (,j - I) dh, , 4h, q = 77-/J(k), 1 < ,j < J(k). 

k=6 e=$. ---j J(S)=1 

I 

8 8 3 
/ 

iD 1 J(5)=4 

I 
a 8 e e 

I 

J !4i=6 

a @ e 8 + J(3;=6 

k =2 : !2)=6 

B=o 

c= I J (I)=6 

FIG. 14. Kurihara scheme mesh. 

We have the same periodic boundary conditions in h as for the centered scheme. 
The boundary conditions at pole and equator are also the same; namely. ZI = c == f: 
at the pole, u and y symmetric in 6, and u skew symmetric about 6 = 0. Again 
J(k) is an input parameter. it is a non-increasing function of k. We require J(K) = i , 
For reasons of program efficiency we require QJ(k) -<, .I(/< + If < J(k) and 
J(1) L- J(2). The mesh structure is shown in Fig. 14. 
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To derive the equations of motion we integrate the equations of motion over the 
“box” shown in Fig. 15. The mesh points are each contained in a rectangle centered 
about the mesh point. The points whose boxes border on the box about PO [the 
point at (Aj , 6,)) are indicated by P, . In the case shown 1 < nz ,( 6. We may have 
the maximum value of nz between 4 and 7. (We assume J(k 4 1) > @(k).) We 
denote the index set for the neighbors of PO by LT that is L = (1, 2, 3, 4, 5, 6) in 
this case. In the case shown in Fig. 16: L = (1,2,3, 4). In the case shown in Fig. 17, 
L = (1, 2, 3, 4, 5, 6). 

k+i\ep3 

FIG. 15. Mesh point numbering-variable mesh spacing. 

PZ 
0 a 

rl 

0 

l PO p3 ’ l PI 

l 0 6 

p4 

FIG. 16. Mesh point numbering-constant mesh spacing. 

p2 
0 l 0 

6 p3 0 0 PI 8 

l e 0 e 6 0 

p4 p5 p6 

FIG. 17. Mesh point numbering-variable mesh spacing. 
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We denote the index set for the East-West neighbors by I.ew and that for the 
North-South by LNS . Thus Lckv = {l? 41; {I, 3); {l. 3) in Figs. 15; ii;,; 17. and 
LNS = (2, 3, 5, 6); 12, 4); (2, 4, 5, 61. The area of the rectangle about P, is d-4, = 
2 sin(dOj3) cos 8, dh, . We denote the length of the segment common to the RX- 
tangles about PO and P,, by S,,, and w,,, == S,,/AAI, . Thus in Fig. I6 

A0 
s, = Ah, cos (Ok +- + 

A0 \ 
s, = --dh, cos (0, - +. 

‘We take w,~ to be negative for the West and South sides. Using the above notatioi3 
we may approximate integrals over a rectangle as given below. 

Here z/+~ denotes the value of # at the mesh point P,: . 
Given functions #, f defined on the mesh and the solution II, 27, y of the difference 

scheme we define four operators as foilows: 

The abcve definition of GA is somewhat different from that given by Kurihara 111. 
We use this form in order to achieve “quasi-conservation” of energy. 

Next we give the difference equations, except we only difference the spaCal deri~,~- 
atives. Thus we are considering mesh functions &,;(r) = #(Aj , 8, , f) ;nstead :.;i 
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#yk = $I(&, Bk, t,). This permits us to derive certain “quasi-conservative” 
relations. The spatial difference scheme is 

__ = -D(l) + F,, at (53) 

where IFZ~ = tan 0, and fk = C, sin 8,: . This scheme is an approximation of the 
integral over a box of the right side of the differential equations. 

The boundary conditions are Uj,l = LIP,% ? yj,l = qj,2 , Uj.1 = -zJ~,~ at the lower 
boundary. At the pole we have ZI~,~ = c 1,J: = 0. The equation for QI~,~~ (the pole 
value) is 

%4 k A = -D(l) + F, . 
2t (54) 

Note that 91,k has neighbors only to the South so that the operator D(1) is 

(55) 

and w,~, is negative. The formula insures exact conservation of mass (assume 
Fw s 0), a property which is retained after the time derivatives are differenced. 

We can prove conservation of energy for the spatial difference scheme. We first 
need two identities. Define an operator i? by 

Then #D(#) = (7,bz/2) D(1) -+ 8(#). We also need 

Here the sum is over the entire mesh. 
Now if we let 

K = C J(LL~?; + ZI;~) yj?c AA,, 
j,k 

(58) 
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we can show by use of the finite difference equations and the above identities tha: 

(We habe assumed that F,, T= F,. = F, = 0.) 
-Thus this schele is “quasi-conservative” of energy. l3y this we mean rhat energ? 

is conserved by the system of ordinary differential equations obtained wheal wz 
difference the equations in space but not in time. After we difference in time the 
scheme is no longer conservative. If it were conservative, we would have an 
unconditionally stable explicit scheme for a hyperbolic system. in most cases this 
is impossible since it violates the Courant-Friedrichs-Lewy condition 181. Never- 
theless these “quasi-conservative” schemes tend to be less prone to uoali~ear 
instability than the simple centered scheme. 

To obtain the full finite difference scheme of Kwihara we use centered differences 
for the time derivatives. 

The diffusion terms are denoted by D,, , D, . and D, and are descrsbed beio\i:. Tf;e 
parameter Ed (0 < Ed < 1) was usually set to zero. The diffusion terms are based 
on the DuFort-Frank! representation of the hapiacian; tha! is, we approximate 
G”$l by 
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This is based on the form of the Laplacian 

Then D, , D, , and D, are defined by the differenced versions of 

D, = 2 AtC,C”(q), 

D,u = 2 dtCd~-2(L~p), 

D, = 2 AtCde.V:P(F)). 

(65) 

(66) 

(67) 

@I 

GLOSSARY 

DELT: 
DELX: 
DIFDFN: 
DIFFUSN: 

DIFST2: 
EPSDFN: 
EPSST2: 
JCASE: 
JINT: 
JMAX: 

At in seconds. 
Ax = A/\ cos 0. 
DuFort-Frank1 diffusion coefficient in m”/sec. 
Multiplier to vary diffusion near the pole. The diffusion 
coefficient G is multiplied by a parameter nz(8) where in = 1 
near the equator and may increase toward the pole. The 
function m(8) = DIFFUSN is plotted with a dashed line in 
the upper right-hand graph. The maximum value of 
DlFFUSN is printed at the top of the graph. 
Similar to DIFDFN, except for two-step diffusion. 
Diffusion multiplier for v field for DuFort-Frank1 case. 
Similar to EPSDFN, except for two-step diffusion. 
Identifies the experimenr. 
JMAX-2. 
Number of mesh points from pole to equator, Ati = 
z-/(2 “(JMAX-2)) f or centered, At? = r/Q*JMAX-3) for 
Kurihara. 

MASS(MIN-MAX): This is the relative loss or gain in mass at the end of the run 
(i.e., the mass at the end divided by the mass at the start). 
The mass is defined by Cij pii AA, AA = 4 AX cos 0 sin Ati. 

NDFN: lnterval between application of DuFort-Frank1 diffusion. 
Every NDFN time steps a DuFort-Frank1 type diffusion 
(see Section 4) is applied to the zl and v equations with 
diffusion coefficient (T = DIFDFN in mz/sec.; the value of 
g used in the equation for the height field y is 
EPSDFN*DIFDFN. 

NIJTOT: Total number of mesh points in the region 0 ,( 0 < r/2, 
O<X<-rr. 
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NST?: 

TYPE: 

9: 
l! 

Similar to NDFN. except \vhen t~vo-step type of difksio!? IS 

used. See Section 2.B. 
The variation of the mesh near the pole is handled it: one of 
two ways determined by the parameter TYPE. If‘ TY PE ~=z i 
then as the pole is approached fewer mesh points arc p!aced 
on a latitude circle (i.e., a circle defined by 8 = constant). 
Thus the value 4X increases and 4x == dh cos 6 does no 
become too small. The solid line in the top graph show 
DELX = 4,~ as a function of latitude 0 (the values ofd:: art: 
normalized to one). If TYPE = 2, then the same :rumber 
of mesh points are placed on each latitude circk; ho~e~r. 
the east-west derivatives are determined by an interpoiatic+n 
scheme which increases the effective value of 3,~. Tha.! is. 
let ztE(h) = (i - X) u(X T !i Ah) + a(.i T (k - I> d.~:,i .>. 
u(A + Ax) and approximate Eu/ZX by (z~ -- zia)i(2 4s) where 
4x = (k A a) 4x with 0 < .l -<: I. in those cases ~%e:i 
TYPE = 2 the value of DELX. as p!ottcd with a solid ct;iy.,< 
in the upper right-hand graph, is defined by the abosr 
equation. The maximum value of DELX is printed ar :ke 
top of the graph. 
Diffusion term, see Section 1. paragraph 1. 
Diffusion term, see Section 1. paragraph 2. 
Coriolis normalization” see Section !, paragraph 2. 
Normalization for pressure gradient term, see Section I, 
paragraph 2. 
Geopotentiai. 
East-west velocity. 
North-south velocity. 
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